About the Institute for Soft Matter Synthesis and Metrology

The emerging field of soft matter research deals with the study of materials that exist between rigid solids and flowing liquids. Familiar examples include foams, gels, adhesives, lubricants, and many biological materials, such as blood or tissue. Soft matter plays an increasingly important role in commercial applications and new technologies but behaves fundamentally differently from traditional, relatively well-understood solids and liquids. The goal of current soft matter research is to understand and control the molecular scale structure of soft matter in order to engineer new classes of materials. Georgetown’s Institute for Soft Matter Synthesis and Metrology, or I(SM)2, launched in 2011 as the result of $6.9 Million construction grant from NIST, serves to catalyze the development of fundamental principles and practical measurement tools that can be applied to soft matter synthesis and precision measurement and characterization (metrology). The Institute comprises faculty primarily from the Departments of Physics and ChemistryBiology, as well as Oncology in the Medical School.

What is Soft Matter & What is it Good For?

Soft Materials have an astonishing range of applications, in products that we use every day. Here are just a few examples of industries built on soft matter. This is not an exhaustive list!

  • Plastics – all plastics are made of soft matter (polymers).
  • Paints – Paints are a mix of polymers, pigments, and colloidal particles. Making non-drip paint requires intimate knowledge of the rheology of dense suspensions, and understanding the non-equilibrium process of paint drying is crucial to develop a fine smooth finish. Coatings (on glass, wire, and metals) involve similar science.
  • Textiles – similarly, all textiles are made of soft matter. Understanding why silk is such a fantastic material is of great current interest!
  • Food – Everything we eat is soft matter, and understanding how to process, package, and even eat food materials involves a range of interesting scientific problems. There is even a field called “psycho-rheology” that studies how the physical texture of food influences how we perceive and ultimately enjoy it.
  • Personal Care Products – Creams, lotions, soaps, and other materials are soft matter, and product design involves detailed knowledge of physics and chemistry of the materials, as well as processing.
  • Life – Biology is literally active soft matter, and the subject of enormous growth and interest from physics and chemistry, as well as biology and medicine of course. Non-equilibrium phenomena are at the heart of life and its myriad function.
  • Energy – The oil industry is built on soft matter, and there is a great push for using soft polymeric materials to make solar cells. Looking at biology, the process of photosynthesis and harvesting light for energy relies on soft matter physics and chemistry.
  • Construction Materials – Wood, plaster, and cement all begin as soft materials. Wood begins as living matter comprising different polymers, and plaster and cement come from dense colloidal liquids whose properties and behavior, upon adding water and subsequently drying, lead to the materials used for walls, roads, and bridges.

Research Themes

Our research focuses on understanding the non-equilibrium behavior of soft matter, all the way from chemical details to coarse-grained modeling. We have a strong focus on integrating our understanding through novel metrologies. 

  • Precision tools and techniques for measuring and manipulating the microstructure of complex materials under controlled conditions
  • Micro- and nano-scale probes for measuring the mechanical properties of microscopic quantities of soft matter to probe connections among microstructure, mechanical properties, and processing conditions.
  • Synthesis and characterization of nanoparticle dispersions, including the dynamics of self-assembly of molecular precursors and novel approaches to polymerization.
  • Synthesis and characterization of self-assembled fibrillar networks, investigations of the self-assembly processes under induced stress, such as that from light, shear, or magnetic fields.
  • Methods and tools to guide and characterize interactions between cells and engineered biocompatible environments. Control over structural, mechanical and biochemical conditions to allow for a better understanding of cell function in physiologically relevant conditions and control of cell function through materials engineering.

Collaboration and Dissemination

The I(SM)2 serves to catalyze regional and national collaborations and disseminate tools and principles of soft matter synthesis, protocols for processing, and metrology. This Institute supports the regional conference series, The Mid-Atlantic Soft Matter (MASM) Workshops. MASM was established in 2007 by Georgetown scientists to encourage inter-institution collaboration and provides an effective venue for promoting interaction among soft matter researchers from academic, industrial, and national laboratories in the Mid-Atlantic region. The workshops are informal and structured to maximize the participation, breadth, and involvement of young researchers. 

Professor Jeff Urbach Discusses Soft Matter

See some videos on the Blair Lab YouTube channel.