Institute Members and Their Research Interests

Jeff Urbach, Director 

Researchers in Urbach Lab are investigating complex dynamics in a variety of systems, ranging from complex suspensions to biopolymer networks to migrating neurons. Using the techniques of statistical physics and nonlinear dynamics, together with advanced imaging techniques, image processing, and computer simulations, they are trying to develop quantitative, testable descriptions of multifaceted, interacting, ever changing systems that might at first glance seem like a complicated mess.


Daniel Blair

In the Blair-lab we are investigating the structure and mechanical properties of soft and biological materials. These materials are often found in disordered and geometrically frustrated configurations that are far from thermal equilibrium. We are particularly interested in how these materials respond to bulk and localized stresses and strains. Using advanced microscopy techniques, such as laser scanning confocal microscopy, coupled with simultaneous rheological measurements, we investigate the interplay between the structure and the dynamics of these materials as they are driven. Insights gained from our experiments will provide insights in many different practical and fundamental materials.


David Egolf 

The Egolf group performs computational and theoretical research focused on the dynamical and statistical properties of systems maintained far-from-equilibrium.  Of particular interest are granular systems, excitable media such as cardiac and neural tissue, fluid systems, and biopolymer networks.  The dynamics of these systems often appear hopelessly complicated to the eye, but, using techniques from nonlinear dynamics and statistical mechanics, we are able to untangle the dynamics and reveal underlying mechanisms that may eventually lead to predictive theories.



Jong-In Hahm 

The Hahm group develops block copolymer-assisted protein arrays, featuring high protein density and functionality, using various self-assembled nanodomains in ultrathin diblock copolymer thin films for spatially arranging precisely known numbers of protein molecules into 1D or 2D arrays. They study key interaction parameters governing the adsorption of proteins to chemically homogeneous and/or heterogeneous nanosurfaces and predict and control the bottom-up assembly of proteins and other biomolecules on polymeric surfaces.


Miklos Kertesz 

The Kertesz group is interested in computational modeling of unusual intermolecular interactions. These studies involve for example secondary bonds as utilized in the design of molecular actuators, and pancake bonds as applied to new organic materials for electronic transport. Work on structures of organic materials helps understand preferred intermolecular packing arrangements at the atomic level that affect properties at larger length scales. An additional project helps elucidate intermolecular interactions that involve the encapsulation of one molecule by another.


Stephen J. Metallo

Natively unstructured or intrinsically disordered (ID) proteins are common in eukaryotes. Proteins with ID regions are often associated with regulatory and signaling pathways in higher organisms and have been implicated in many diseases. These proteins do not have stable secondary or tertiary structure but neither do they exist as simple random-coil polymers. They sample a certain ensemble of conformations, rapidly converting between conformations. We have demonstrated multiple examples of how small molecules can bind with specificity to their counter-intuitive, unstructured targets. We are working to understand more generally the energetics of these interactions and the role that peptide dynamics plays in determining binding site selection and specificity in the realm of unstructured proteins.


Edward Van Keuren

Work in the Van Keuren lab is focused on the study of the nucleation and growth of nanoparticles in solution. They use precipitation methods to induce a high level of supersaturation in a solution and observe the formation of nanoparticles using a number of methods, including dynamic light scattering, absorption, fluorescence and Raman spectroscopy and electron microscopy. These observations are used to develop and refine models of molecular aggregation/self-assembly.


Richard G. Weiss

The Weiss group studies mechanistic photochemistry and photophysics, mechanisms of reactions, and nuclear magnetic resonance in aligning media, gels, ionic liquids, polymers, and liquid crystals. The photochemical and photophysical studies are frequently conducted in the soft matter matrices, many of which have been developed within the Weiss lab. In addition, some of the materials are being examined as reversible adhesives, as food additives, for art conservation, and as dispersants and coagulants to contain oil spills.

Xinran Zhang

Assistant Director --- Responsible for the administration and management of the core instrumentation facility.



Tali Si Malott